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Gebbia, Yuriy Gorodnichenko, and Oliver Kim for helpful comments and suggestions.

†bernardo candia@berkeley.edu
‡fdiazvaldes@uandes.cl



1 Introduction

Recent literature on labor earnings dynamics describes recessions as times when

employed households face larger downside risks to their current and future labor in-

come. For instance, Guvenen, Ozkan, and Song (2014) and Busch, Domeij, Guvenen,

and Madera (2022) find that the distribution of earnings growth displays substantial

pro-cyclical skewness. During recessions, large upward earnings movements become

less likely. In contrast, persistent large earning falls become more likely.1 Furthermore,

the literature has documented that these labor-earning risks are highly persistent (Gu-

venen, Mckay, and Ryan, 2023).

Motivated by this new empirical evidence, we build on Krueger, Mitman, and Perri

(2016a) (henceforth KMP) and McKay (2017) to develop a real business cycle model

that features heterogeneous households, incomplete markets, and idiosyncratic earn-

ings risk that correlates with aggregate shocks. We calibrated the model to capture the

effects of the US Great Recession. We tackle three novel questions using our model. (i)

How much do household wealth inequality and idiosyncratic cyclical labor earnings

risk account for the initial response of consumption to large real aggregate shocks? (ii)

How do these cyclical risks shape the recovery of consumption after the initial down-

turn? (iii) How much do these cyclical risks exacerbate aggregate welfare losses from

severe recessions, and how do they shape the cross-sectional distribution of household

welfare losses?

In our model, the cyclicality of labor income risk comes from two sources. First,

in the spirit of Krusell and Smith (1998), unemployment is stochastic, and its dura-

tion and persistence increase during recessions. Second, conditional on employment,

the distribution of labor earnings risk displays pro-cyclical skewness. Since the liter-

ature still does not provide a widely-accepted theory on why the distribution of em-

ployed households’ earnings risk exhibits cyclical skewness, we follow McKay (2017)

1See Global Repository of Income Dynamics website for an extensive list of current research on
income dynamics for various countries.
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and McKay and Reis (2021) taking as given this cyclical skewness. Then, we proceed

to analyze its consequences for consumption dynamics and welfare. To illustrate the

effects of these time-varying earnings risks, we report our findings relative to a model

with only unemployment risk varying over the cycle.

We start our investigation by exploring if the inclusion of countercyclical earnings

risk affects the ability of our model to reproduce the main empirical facts characteriz-

ing the US wealth distribution. Evaluating the effects of the addition of cyclical income

risk is crucial because KMP showed that incomplete markets must feature a realistic

wealth distribution to produce large consumption drops in response to aggregate real

shocks. We find that incorporating the cyclical nature of earnings risk does not alter the

ability of our model to replicate the US wealth distribution. On the contrary, our model

matches the observed US wealth distribution quite well. For instance, the mean square

distance of the share of net worth held by quintiles between data and the model is 1.8,

while the mean square distance between data and the KMP model is 6.9. Moreover,

the model generates wealth-poor households representing a larger share of aggregate

consumption than in KMP, which is vital to greater consumption responses.

Then, we perform two experiments to evaluate the impulse responses of macroeco-

nomic aggregates to negative technology shocks, focusing mainly on the response to

aggregate consumption. The two experiments are (i) a one-time negative technology

shock and (ii) a Great Recession-type shock that lasts, on average, 22 quarters. In the

first experiment, when the recession hits the economy, the initial decline in consump-

tion is 0.5 percentage points larger than the economy with just cyclical unemployment

risk. The larger consumption drop is because, conditional on employment, future per-

sistent earnings decline becomes more likely, increasing the expected duration of the

earnings losses during economic meltdowns. In the second experiment, the initial drop

is more persistent, languishing the consumption recovery compared to the economy

with just cyclical unemployment. In our baseline model, recessions will increase the

likelihood of suffering a highly persistent negative earnings shock, leading poor and

wealthy households to increase precautionary savings by reducing consumption. The
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high persistence of earnings shocks makes it challenging to self-insure against it, so

after the economy slips into recession, aggregate consumption will remain low as long

as households try to build up precautionary savings for future periods, weakening the

recovery of aggregate consumption.

In evaluating the consumption response to severe recessions, we differ from McKay

(2017) in an important aspect as we consider general equilibrium effects, that is, the

role of the negative productivity shock in reducing factor prices. McKay (2017) holds

total factor productivity constant in his main result. Thus, his model generates slight

output declines, yielding minor declines in factor prices so that it can be taught as a

near-partial equilibrium analysis.

Finally, following Krueger, Mitman, and Perri (2016b), we measure the welfare

losses from experiencing severe economic meltdowns such as the Great Recession and

study how they are distributed across the population. In the model with cyclical labor

income risks, aggregate welfare losses are around 4.1% of lifetime consumption, rep-

resenting an increase of one percentage point in welfare losses compared to the model

with just unemployment risk. Moreover, the model with both types of risk displays

a welfare loss distribution with a thicker and longer right tail, meaning that a non-

negligible fraction of households suffers major losses. For instance, around 23% of

households experience losses bigger than 5% of lifetime consumption, while it is about

11% in the model with just cyclical unemployment.

Related literature. Since Krusell and Smith (1998) influential paper, understand-

ing the role of incomplete markets and household heterogeneity in the business cycle

has become an active area of research. This paper adds to the growing literature on

the relationship between wealth inequality and real macroeconomic shocks. Krueger,

Mitman, and Perri (2016a), which is one of our most related papers, studies an incom-

plete markets model with idiosyncratic income risk and preference heterogeneity to

quantify how household heterogeneity, particularly wealth inequality, amplifies and

propagates negative aggregate shocks. Their key finding is that net worth inequal-
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ity significantly deepens the aggregate consumption drop in response to a negative

macroeconomic shock relative to the standard representative agent economy. Wealth-

poor and borrowing-constrained households, which have a high marginal propensity

to consume, sharply cut their consumption expenditures to increase precautionary sav-

ings as recession hits.

While the findings of KMP provide insights into how the presence of a significant

fraction of households with little or no wealth exacerbates the response of consump-

tion in recessions, Amromin, De Nardi, and Schulze (2018) argues that KMP could

understate the consumption drop and the subsequent weak recovery by abstracting

from relevant changes that occurred during the Great Recession. In particular, and

more important for our purposes, the KMP model assumes that unemployment is the

only cyclical idiosyncratic risk. However, there is a vast literature documenting that

in recessions, conditional on being employed, the likelihood of large and persistent

earnings declines increases, whereas it decreases for upward earnings movements.

Guvenen, Ozkan, and Song (2014) using labor earnings data from the US Social Se-

curity Administration documented that in recessions, the right tail of earnings shock

distribution collapses while the left tail enlarges, yet the median slightly varies relative

to the tails. Similarly, Busch, Domeij, Guvenen, and Madera (2022) employing admin-

istrative data from the United States, Germany, and Sweden, found that skewness is

robustly pro-cyclical. Changes in hours and wages are essential to generate the pro-

cyclical skewness in earnings growth. The finding of strongly pro-cyclical skewness in

earnings growth conditional has also been found in the UK (Angelopoulus, Lazarakis,

and Malley, 2019) and in Denmark (Harmerberg and Sievertsen, 2021). Moreover,

Nakajima and Smirnyagin (2019) and Busch and Ludwig (2021) have documented the

same pattern using the US Panel Study of Income Dynamics (PSID).

If households expect declines in labor earnings to be long-lasting in economic down-

turns, they will cut consumption much more for precautionary reasons, causing aggre-

gate consumption to fall even further. Moreover, after the onset of the recession, house-

holds would begin to increase their buffer stocks, weakening the consumption recov-
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ery. McKay (2017) found that a significant part of the decline of aggregate consumption

during the Great Recession could be explained by the increase in the downside risks

on labor earnings prospects. Nevertheless, his work does not mean to be a complete

depiction of the Great Recession, as he maintains constant the total factor productivity.

He neither investigates the welfare losses of experiencing a severe recession nor how

they are distributed across households.

Our work also relates to the literature on the welfare costs of aggregate fluctuations.

In a seminal article, Lucas (1987) calculated that the gains from eliminating business cy-

cle fluctuations are insignificant (around one-tenth of one percent of annual consump-

tion for the US). An extensive literature has questioned the assumptions underlying his

contentious result, namely: complete markets, the lack of interaction between aggre-

gate and idiosyncratic shocks, preferences, and the use of infinitely-lived households

(see Imrohoroglu (2008) for a survey). In particular, as wealth is unequally distributed,

it is reasonable to presume that welfare losses will be unevenly distributed. House-

holds at the borrowing constraint or those with little wealth cannot insure themselves

from a negative income shock to the same degree as rich-wealth households.

The importance of incomplete markets and the relationship between idiosyncratic

and aggregate shocks for welfare analysis was documented by Krusell, Mukoyama,

Sahin, and Smith (2016). Using an incomplete markets model with stochastic discount

factors and unemployment shocks, they calculated that welfare gains are around one

order of magnitude larger than those computed by Lucas (1987). Likewise, and espe-

cially relevant to our work, Krueger, Mitman, and Perri (2016b) calculate the welfare

losses from the Great Recession using the KMP model. They found that the welfare

cost of losing one’s job at the onset of the recession is 2% of lifetime consumption for

the wealthiest quintile, whereas it is 5% for the poorest. The latter result is consistent

with Chatterjee and Corbae (2007), as they have shown that the welfare gains from

eliminating the probability of a severe deep recession, such as the Great Depression,

range between 1% and 7% of lifetime consumption.

Furthermore, the nature of labor income risk is relevant to measuring the welfare
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costs of macroeconomic instability. Guvenen (2007, 2009), Krebs (2007), Heathcote,

Storesletten, and Violante (2009), Low, Meghir, and Pistaferri (2010), and McKay and

Reis (2021) all explore the welfare implications of different ways of modeling idiosyn-

cratic income risk. We contribute to this literature by computing the welfare losses of

experiencing a recession and how they are distributed across the population. We con-

sider the relationship between highly persistent earnings risk and the business cycle,

and we document important welfare implications for the economy, especially for those

households near or at the borrowing constraint.

This paper is organized as follows. Section 2 develops a real business cycle model

with heterogeneous households, incomplete markets, and countercyclical earning risk.

Section 3.2 describes the calibration. In section 4, we study to which extent the model

can match the relevant features of the observed US wealth distribution. We then an-

alyze the response of aggregate macroeconomic variables and welfare losses during a

severe economic downturn. Section 5 concludes, and the appendix contains a detailed

description of the estimation of the stochastic process for labor earnings, solution meth-

ods, complementary theory, and the computational algorithm employed.

2 Model

This section builds a dynamic general equilibrium model based on Krueger, Mit-

man, and Perri (2016a). The model features heterogeneous households, incomplete

markets, aggregate productivity shocks, and idiosyncratic risk in the form of unem-

ployment and labor productivity (skill or efficiency shocks, for lack of a better term).

The model’s key feature is that idiosyncratic labor productivity shocks vary with the

business cycle. As far as our knowledge is concerned, there is no well-established the-

oretical foundation for the cyclicality of long-term earnings changes. Therefore, we fol-

low McKay (2017) and McKay and Reis (2021), assuming this reduced-form approach

in which idiosyncratic labor efficiency varies along the business cycle, generating the

procyclical skewness of labor income.
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2.1 Technology

A unique final good Y is produced out of capital K and labor L by a representative firm

according to a Cobb-Douglas production function:

Y = z f (K, L) = zKαL1−α, 0 < α < 1,

where z is an exogenous total factor productivity shock (TFP), which follows a first-

order Markov chain with transition matrix π(z′|z). The TFP shock takes values z ∈

Z = {zl, zh}, where zl < 1 < zh. We interpret zl as a severe recession and zh as normal

times. Let Π(z) be the invariant distribution of the TFP shock. As usual, the firm max-

imizes profits by solving a static problem. It rents capital and labor at prices r and w,

respectively, so that the following first-order conditions hold:

r = z fK(K, L),

w = z fL(K, L).

2.2 Households

2.2.1 Households endowments, preferences, and savings

A unit mass of households populates the economy. Households have stochastic life

horizons due to a constant probability of dying in each period equal to 1 − θ ∈ (0, 1).

The fraction of deceased households is replaced by an equivalent measure of new-

borns, leaving the population size unchanged.

Households derive utility from the consumption of the final good according to a

CRRA utility function with relative risk aversion parameter σ. Households seek to

maximize their lifetime utility given by:

W ≡ E0

[
∞

∑
t=0

(βθ)t c1−σ
t

1 − σ

]
,
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where ct is the household’s consumption in period t, and β is the intertemporal dis-

count factor, which is heterogeneous across households but fixed over time for a given

household. Following Carroll, Slacalek, Tokuka, and White (2017), households draw β

at the beginning of their life from a uniform distribution with support
[

β − ν, β + ν
]
.2

In each period, households have an endowment of one unit of time and a stochas-

tic log-labor efficiency γ ∈ Y . Households supply their unit of time inelastically with

log-labor efficiency γ to the labor market. Additionally, they could be either unem-

ployed or employed. Let ε ∈ E = {0, 1} denote the current employment status of

a household, with zero and one denoting unemployment and employment, respec-

tively.3 Employed households receive a pre-tax labor income equal to w exp(γ). In

contrast, the unemployed receive an amount of b from an unemployment insurance

system. The amount b is equivalent to a fraction ρ ∈ (0, 1) of their potential labor in-

come.4 Following Krueger, Mitman, and Perri (2016a), we assume that taxes are levied

on both labor earnings and unemployment benefits at rate τ(z, ρ) ∈ (0, 1), which may

depend on the aggregate state of the economy.

Households can save (but not borrow) by accumulating physical capital and hav-

ing access to perfect annuity markets.5 Hence, the gross return of savings, conditional

on survival, equals (1 − δ + r)/θ.6 We denote by a ∈ [0, ∞) the household’s capital or

asset holdings. In each period, capital depreciates at a rate δ ∈ (0, 1). Since households

cannot borrow, markets are incomplete. Consequently, there are no financial instru-

ments with which households can fully insure themselves against idiosyncratic risks.

Consequently, households will try to hedge by holding physical capital.
2With permanent discount factor heterogeneity the wealth distribution could be unbounded.

However, it is not the case in the present work because of the positive probability of dying.
3For simplicity, we assume that the employment status is stochastic to represent, in a reduced form,

the underlying frictions in the labor market.
4We assume that employment status and labor efficiency are public information, so only unem-

ployed households will receive the unemployment benefits.
5The assumption of exogenous borrowing constraints represents households’ underlying frictions

in financial markets. While the assumption is a simplification, there is a vast empirical literature
supporting the existence of partial insurance due to financial constraints Aiyagari (1994), Krusell and
Smith (2006), and Guvenen (2011) to name a few studies.

6We assume that the capital of deceased households is used to pay an extra return equal to 1/θ to
those households who survive.
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Finally, we denote by Φ the entire cross-sectional distribution of individual charac-

teristics (a, ε, γ, β) and, together with the aggregate productivity shock z, summarize

the aggregate state of the economy in each period.

2.2.2 Idiosyncratic countercyclical earnings risk

The labor income uncertainty comes from two sources:

1. Idiosyncratic unemployment risk. As in Krusell and Smith (1998), the unemploy-

ment stochastic process follows a first-order Markov chain with transition matri-

ces π(ε′|ε, z′, z). The matrices’ dependence on the aggregate productivity transi-

tion allows the model to capture the effects of the business cycle on the persistence

and incidence of unemployment.

2. Idiosyncratic efficiency risk. As it is common in the literature, the log-labor pro-

ductivity of households follows a process with transitory and persistent compo-

nent:7

log(yt) = log(xt) + ϵt, ϵt ∼ N (0, σϵ).

In line with Guvenen, Ozkan, and Song (2014), the persistent part follows an

AR(1) process with persistence parameter ϕ ∈ [0, 1], and the innovations are

drawn from a mixture of normal distributions whose parameters vary along with

the business cycle:8

log(xt) = ϕ log(xt−1) + ηt, (1)

7This specification finds empirical support in Meghir and Pistaferri (2004), Storesletten, Telmer, and
Yaron (2004b), Guvenen (2009), Meghir and Pistaferri (2011)

8The dependency between labor productivity and the business cycle is documented in Guvenen,
Ozkan, and Song (2014), McKay (2017), Busch, Domeij, Guvenen, and Madera (2022), Busch and
Ludwig (2021)

9



where

ηt =


N (µ1(zt), σ1) with prob. p1(zt)

N (µ2(zt), σ2) with prob. p2(zt)

N (µ3(zt), σ3) with prob. p3(zt),

with ∑i pi(zt) = 1, pi(zt) ≥ 0, zt ∈ Z , and by normalization, E(exp(ϵt)) = 1 and

E(exp(ηt)) = 1 . The latter normalization is because the primary interest of the

paper is to analyze how fluctuations in the third moment of labor earnings shocks

change households saving behavior while keeping constant the first moment.

1. We discretize the persistent process in nγ nodes Y = {γ1, . . . , γn} using a modi-

fied version of the method proposed in Civale, Dı́ez-Catalán, and Fazilet (2016).

The log-labor efficiency process is discretized in n nodes Y = {γ1, . . . , γn}. We

assume that γ follows a Markov process with transition matrices π(γ′|γ, z′, z),

which depends on the aggregate state of the economy. Due to the normaliza-

tion described above, the discrete process for the idiosyncratic labor productivity

shock satisfies ∑γ Πz(γ)γ = 1, for z ∈ Z .

Both idiosyncratic shocks satisfy the law of large numbers. Consequently, only the

aggregate shock z determines the share of households in each idiosyncratic state (ε, γ).

These shares are denoted by Πz(ε) and Πz(γ), respectively.
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2.2.3 Household decision problem

Given the distribution Φ and the aggregate shock z, a household with individual state

variables (a, ε, γ, β) solves the following recursive problem:

v(a, ε, γ, β; Φ, z) = max
a′≥0, c≥0

{
u(c) + βθ ∑

{z′,ε′,γ′}
π(z′|z)π(ε′|ε, z′, z)π(γ′|γ, z′, z) v(a′, ε′, γ′, β; Φ′, z′)

}

s.t. c + a′ =
[

1 − δ + r(Φ, z)
θ

]
a +

(
1 − τ(z, ρ)

)
w(Φ, z) exp(γ)ε + b(γ; Φ, z)(1 − ε)

Φ′ = H(Φ, z, z′),

where H represents the law of motion of the distribution of individual states. Notice

that the prices r(Φ, z) and w(Φ, z) and unemployment insurance benefits b(γ; Φ, z) de-

pend on the distribution of individual states and the aggregate shock.

2.2.4 Government and social security

The government implements a balanced budget unemployment insurance system:

τ

[
∑
γ

Πz(γ)Πz(ε = 1)w(Φ, z) exp(γ) + Πz(ε = 0)b(γ; Φ, z)

]
︸ ︷︷ ︸

Tax revenue

= Πz(ε = 0)∑
γ

Πz(γ)b(γ; Φ, z)︸ ︷︷ ︸
Government spending

,

then the tax rate that balances the budget satisfies the following:

τ(z, ρ) = ρ

(
Πz(ε = 0)

1 − Πz(ε = 0)

)
.

The tax rate depends on the business cycle because the aggregate productivity shock

determines the unemployment rate.

11



2.3 Recursive competitive equilibrium

Given Φ, z and ρ, a recursive competitive equilibrium is characterized by a value func-

tion v, policy functions a′ and c, pricing functions r and w, and an aggregate law of

motion for Φ such that:

1. The value function v satisfies the Bellman equation. Also, given r(Φ, z) and w(Φ, z),

a′ and c are the associated policy functions.

2. Given r(Φ, z) and w(Φ, z), aggregate capital and labor satisfy:

r(Φ, z) = z fK(K, L)

w(Φ, z) = z fL(K, L)

3. Markets clear for all (Φ, z):

L =
(

1 − Πz(ε = 0)
)

∑
γ∈Y

Πz(γ) exp(γ)

K′ =
∫

a′(a, ε, γ, β; Φ, z) dΦ(a, ε, γ, β)

C =
∫

c(a, ε, γ, β; Φ, z) dΦ(a, ε, γ, β)

Y = C + K′ − (1 − δ)K

4. For all (Φ, z), the labor income tax rate τ is adjusted so that the Government fol-

lows a balanced budget policy.

5. The aggregate law of motion H is induced by the idiosyncratic exogenous stochas-

tic and aggregate processes and by the optimal policy functions.
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2.4 Computational aspects

In the recursive household decision problem, the cross-section distribution of individ-

ual characteristics Φ is an endogenous state variable. Households need to know how

the distribution will evolve to forecast future prices. Unfortunately, the dimension of Φ

is infinite, and numerical solutions to dynamic programming problems become more

challenging as the number of state variables increases.

Thus, we solve the household problem using the Quasi-Aggregation algorithm pro-

posed by Krusell and Smith (1998).9,10 This algorithm assumes that agents are bound-

edly rational, considering that current and future prices depend on a finite number of

moments of the distribution of wealth. We assume that agents keep track only of the

mean of the capital stock, allowing us to replace the aggregate law of motion for Φ

with a log-linear law of motion for K that depends solely on the realization of z. Given

the aggregate capital K and the aggregate shock z, a household with individual state

(a, ε, γ, β) solves the following recursive problem:

v(a, ε, γ, β; Φ, z) = max
a′≥0, c≥0

{
u(c) + βθ ∑

{z′,ε′,γ′}
π(z′|z)π(ε′|ε, z′, z)π(γ′|γ, z′, z) v(a′, ε′, γ′, β; Φ′, z′)

}

s.t. c + a′ =
[

1 − δ + r(Φ, z)
θ

]
a +

(
1 − τ(z, ρ)

)
w(Φ, z) exp(γ)ε + b(γ; Φ, z)(1 − ε)

log(K′) = ψl + κl log(K) if z = zl

log(K′) = ψh + κh log(K) if z = zh

where ψl, ψh, κl and κh are constants to be determined using the Krusell and Smith

(1998) method. We iterate on the Euler equation to solve the household decision prob-

lem, as in Maliar, Maliar, and Valli (2010).11

9To implement the Quasi-Aggregation algorithm, we simulate a continuum of agents using the
method described in Rı́os-Rull (1999). Simulating a continuum eliminates the sampling noise in some
subgroups of households. See Algan, Allais, and Den Haan (2010), and Algan, Allais, Den Haan, and
Rendahl (2014) for a discussion about the possible adverse effects of simulating a finite number of agents.

10See Appendix A.2 for details on the algorithm employed to simulate a continuum of agents.
11See Appendix A.3 for details of the Euler equation method.
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3 Calibration

The model is calibrated to quarterly data. Table 1 reports the value, description,

and source or target of the calibrated parameters.

Table 1: Calibration
Parameter Value Description Source or Target

Basic Parameters
σ 2 Coefficient of relative risk aversion Standard value
1 − θ 0.5% Probability of dying Expected working lifetime: 50 years
δ 2.5% Depreciation rate Den Haan et al., 2010
α 36% Capital share Den Haan et al., 2010
ρ 15% Replacement rate Den Haan et al., 2010

Business cycle parameters
(zl, zh) (0.9676, 1.0064) Aggregate productivity support Krueger et al., 2016a
(Πzl(ε = 0), Πzh(ε = 0)) (8.39%, 5.33%) Unemployment rate Krueger et al., 2016a
π(ε′|ε, z′, z) See text Transition matrix unemployment shock Krueger et al., 2016a
π(z′|z) See text Transition matrix aggregate shock Krueger et al., 2016a

Discount factor parameters
β̄ 0.9360 Mean discount factor Capital to output ratio: 10.26
ν 0.0571 Discount factor dispersion Wealth Gini coefficient: 0.78
nβ 7 Number of nodes for discretization Carroll et al., 2017

Idiosyncratic labor earnings shock parameters
γ See appendix Idiosyncratic efficiency Discretization
π(γ′|γ, z′, z) See appendix Transition matrix of labor earnings process Discretization

3.1 Parameters taken from literature

As is standard in the literature, we set the relative risk aversion parameter to σ = 2,

the depreciation rate to δ = 2.5%, and the capital share to α = 0.36. We set the prob-

ability of dying to 1 − θ = 0.5% for an expected working life of 50 years. Wet set the

unemployment replacement rate to ρ = 15%. To calibrate the parameters related to the

business cycle, we follow Krueger, Mitman, and Perri (2016a), who defines a severe

recession as one in which the unemployment rate exceeds 9% for at least one quarter.

Its duration is determined by the number of quarters in which the unemployment rate

exceeds 7%. Under this definition, over the period from 1948.I to 2014.III, the aggregate

shock process reflects an average duration of 22 quarters for severe recessions.
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The resulting transition matrix for the aggregate shock is:

π(z′|z) =

 ρl 1 − ρl

1 − ρh ρh

 =

 0.9545 0.0455

0.0090 0.9910


where ρl and ρh are the persistence parameters of severe recession and normal times,

respectively. This parameterization implies that the invariant distribution for the ag-

gregate technology shock is Π(z) = [0.164, 0.836].

The idiosyncratic unemployment risk is determined by four employment-unemployment

Markov transition matrices that depend on the economy’s aggregate state transition

and are specified to reflect actual job search and separation rates in the CPS data. The

unemployment transition matrices are taken directly from Krueger, Mitman, and Perri

(2016a):

π(ε′|ε, z′l, zl) =

 0.3378 0.6622

0.0606 0.9394

 , π(ε′|ε, z′h, zl) =

 0.2220 0.7780

0.0378 0.9622



π(ε′|ε, z′l, zh) =

 0.3382 0.6618

0.0696 0.9304

 , π(ε′|ε, z′h, zh) =

 0.1890 0.8810

0.0457 0.9543


where the first element in each matrix corresponds to the probability that an unem-

ployed household remains unemployed between the current period and the next.

3.2 Calibrated parameters and discretization

Following Krueger, Mitman, and Perri (2016a), the parameters that characterize the

distribution of the discount factor
(

β, ν
)

are calibrated to a Wealth Gini coefficient of

0.77 and a quarterly capital-to-output ratio K/Y of 10.26 (Carroll, Slacalek, Tokuka, and

White, 2017). This targeted values require that β̄ = 0.936 and ν = 0.0571. Thus, the dis-

count factor is uniformly distributed between [0.8789, 0.9931]. The distribution is then

discretized in 7 equidistant nodes as in Carroll, Slacalek, Tokuka, and White (2017).
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The significant amount of heterogeneity in the discount factor deserves an explana-

tion. Krusell and Smith (1998) have argued that just little heterogeneity in patience is

sufficient to match the wealth distribution. Incorporating a small dispersion in the dis-

count factor into their model increases the Gini coefficient of wealth from 0.25 to 0.82.

Why does Krusell and Smith (1998) require low heterogeneity in the discount factor

to produce such an increment in wealth inequality? First, the households are modestly

risk-averse in Krusell and Smith (1998). Secondly, agents in their model face small ag-

gregate productivity shocks, and the unemployment shock has low persistence, last-

ing two quarters on average (Hendricks, 2007). Consequently, there are no incentives

to hold large amounts of precautionary savings. Then, a tiny dispersion in the dis-

count factor is just enough to increase inequality in wealth holdings (Carroll, Slacalek,

Tokuka, and White, 2017). In our model, agents have greater risk aversion and face

more realistic labor earnings risk (unemployment and efficiency shocks) and a greater

dispersion and persistence in the aggregate productivity shock. Hence, small amounts

of heterogeneity in the discount factor have almost no effect on the wealth distribution

because households have substantial incentives to hold precautionary wealth. There-

fore, we require higher discount factor heterogeneity to generate a realistic wealth dis-

tribution featuring approximately 40% of agents with no or little wealth.

Finally, we discretize the log-labor idiosyncratic earnings process into a first-order

Markov chain modifying the method proposed in Civale, Dı́ez-Catalán, and Fazilet

(2016). The procedure provides the nodes {γ1, . . . , γn}, the invariant distributions

Πz(γ) and the transition matrices π(γ′|γ, z′, z).12

4 Results

The results are based on a comparison of two versions of the model. The first ver-

sion assumes that the labor efficiency process follows an AR(1) with innovations drawn

from a mixture of normal distributions with constant parameter values. This version

12The idiosyncratic labor earnings process features a non-Gaussian distribution. Therefore, its
discretization is not trivial. Details of the procedure can be found in the appendix A.4.
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approximates the original KMP model without the life-cycle component and different

parameterization. We denote this version as the Acyclical model. The second version

assumes that the labor efficiency process follows an AR(1) with innovations drawn

from a mixture of normal distributions whose parameters vary along the business cy-

cle. Hence, the distribution of labor earnings growth exhibits a procyclical skewness.

Thus, in this model version, conditional on employment, long-lasting declines in labor

earnings are more likely during recessions, while large, long-lasting upward move-

ments are less likely. We denote this version as the Cyclical model.

The comparison of the models is in terms of (1) their ability to match the observed

US cross-sectional wealth distribution and to what extent the models can reproduce

the empirical joint distribution of income, consumption, and wealth. (2) The aggregate

consumption, investment, and output response to negative technology shocks. We

consider two types of technology shocks with different expected duration, a one-time

negative technology shock and one negative aggregate shock as persistent as the Great

Recession. Finally, (3) we compute individual welfare losses when the economy slips

into severe economic downturns with an expected duration of 22 quarters and examine

how these losses are distributed across households. Also, we measure the aggregate

welfare losses of such types of severe recessions.

4.1 Income and consumption across the wealth distribution

The key elements that allow the KMP model to replicate the empirical distribution of

wealth are the heterogeneity in the discount factor and the idiosyncratic efficiency risk.

Heterogeneity in the degree of household patience for future consumption streams al-

lows a non-negligible share of extremely patient households to continue saving even

at high levels of wealth. At the same time, it produces very impatient households with

little incentive to accumulate wealth, amplifying wealth inequality. Moreover, includ-

ing the stochastic and persistent labor efficiency process implies that households in the

low-productivity state remain in that state, on average, for a long time, making it more

difficult for them to accumulate wealth. Conversely, households in a high-productivity
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state will accumulate wealth for fear of a negative labor efficiency shock. Given those

mentioned above, we explore to what extent the inclusion of persistent and cyclical

income shocks, conditional on employment, affects the model’s ability to replicate the

observed US cross-sectional wealth distribution.

Table 2 reports key wealth distribution statistics computed from the data (2006

Panel Survey of Income Dynamics (PSID) and 2007 Survey of Consumer Finances

(SCF)), the original KMP model, and our two model versions.13 To make the compar-

ison fair between models, all of them are calibrated to match the same Gini coefficient

and capital-output ratio. The table shows several interesting facts. First, the wealth

distribution is virtually identical in both of our models. Hence, the inclusion of coun-

tercyclical earnings risk does not significantly alter the wealth distribution. Second,

both of our models do a better job overall matching the empirical US wealth distribu-

tion. For instance, in the original KMP model, the middle class is too wealthy, and the

wealthy are too poor compared to the data. However, the better fit comes at the cost

of doing slightly worse at the bottom of the distribution. Finally, our models better

match the wealth concentration at the top of the distribution. The data shows that the

top 1% of wealthy households own 30% of overall wealth. In our two models, these

households account for 23%, well above the 14% of the original KMP model.

Figure 1 presents the Lorenz curve for the wealth distributions of the data (SCF,

07), the original KMP model, and our two model versions. The figure clearly shows

the patterns documented in the above paragraph. Our models match the wealth dis-

tribution at the bottom slightly worse, but much better fit at the top and very top of

it. Nevertheless, we do not consider this a major drawback because the consumption

policy function is almost linear at high wealth levels. Therefore, we may think that me-

chanically redistributing wealth beyond the top wealthiest 20% does not significantly

alter aggregate consumption dynamics.

13SCF, PSID, and KMP model wealth distribution statistics are from Krueger, Mitman, and Perri
(2016a).
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Table 2: Wealth Distributions: Data v/s Models

Data Models
% Share held by: PSID, 06 SCF, 07 KMP Acyclical Cyclical

Q1 -0.9 -0.2 0.3 0.5 0.5
Q2 0.8 1.2 1.2 2.0 2.0
Q3 4.4 4.6 4.6 4.9 4.9
Q4 13.0 11.9 16.0 11.9 11.9
Q5 82.7 82.5 77.8 80.6 80.6

Top 10% 67.4 69.9 58.1 66.6 67.1
Top 5% 53.7 58.8 40.2 52.1 52.5
Top 1% 30.9 33.5 14.2 22.9 23.0

Gini 0.77 0.78 0.77 0.77 0.77

Note: The table reports wealth distribution statistics computed from the data (2006
Panel Survey of Income Dynamics (PSID) and 2007 Survey of Consumer Finances
(SCF)), the original KMP model, and our two model versions. SCF, PSID, and KMP
model wealth distribution statistics are from Krueger, Mitman, and Perri (2016a).

Figure 1: Lorenz Curve: Data v/s Models
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Note: This figure displays the wealth distribution Lorenz Curve for SCF 07 data, the
KMP model, and the Cyclical model.
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Next, we test the ability of the Cyclical model to replicate the joint distribution

of disposable income, consumption expenditures, and wealth displayed in the PSID

data.14 Table 3 reports the share of disposable income and consumption expenditure

by net worth computed from data (PSID), the original KMP model, and the Cyclical

Model.15 First, for both models, there is a positive correlation between disposable in-

come and consumption expenditure with net worth, as in the data. Second, in the data,

the bottom two net worth quintiles account for 22.7% of overall consumption expendi-

tures, while in the Cyclical model, it is approximately 20%, improving upon the 17.9%

of the KMP model. This improvement is relevant because those quintiles have the most

significant decline in consumption when the recession hits, which is essential for the

macro response to aggregate shocks (Krueger, Mitman, and Perri, 2016a). The Cyclical

model generates wealth-poor households that are more consumption-rich than those

of the original KMP model and wealth-rich households that are less consumption-rich,

closing the discrepancy between the KMP model and the data.

Table 3: Selected Variables by Net Worth: Data v/s Models

% Share of
Disposable Income Expenditures

Net Worth PSID, 06 KMP Cyclical PSID, 06 KMP Cyclical

Q1 8.7 6.0 8.3 11.3 6.6 7.4
Q2 11.2 10.5 13.1 12.4 11.3 12.4
Q3 16.7 16.6 18.2 16.8 16.6 17.7
Q4 22.1 24.3 24.4 22.4 23.6 24.4
Q5 41.2 42.7 36.1 37.2 42.0 38.1

Note: This table reports the share of disposable income and consumption expenditure
by net worth computed from data (PSID), the benchmark KMP model, and the two
versions of our model. PSID and benchmark KMP model, joint distribution statistics,
are from Krueger, Mitman, and Perri (2016a).

14We do not report the Acyclical model as their shares are nearly identical to those of the Cyclical
model.

15PSID and benchmark KMP model joint distribution statistics are from Krueger, Mitman, and Perri
(2016a)
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4.2 The dynamics of macroeconomic aggregates in severe recessions

The main finding of Krueger, Mitman, and Perri (2016a) is that an incomplete mar-

ket economy that generates a realistic wealth heterogeneity amplifies the aggregate

consumption drop by a factor of two when a recession hits relative to the representa-

tive agent (RA) economy. The reason is that the KMP model, as observed in the data,

generates a wealth distribution where nearly 40% of the population holds almost no

wealth but represents an important part of aggregate consumption. When the aggre-

gate economy slips into a recession, these wealth-poor households drastically reduce

consumption for precautionary saving motives.

Introducing a higher likelihood of long-lasting declines in income while reducing

the probability of upward movements for employed households when the economy

slips into a recession should strengthen the precautionary savings motive, amplify-

ing the aggregate consumption drop and weakening its subsequent recovery (McKay,

2017; Amromin, De Nardi, and Schulze, 2018). In this subsection, we provide a quan-

titative answer to this hypothesis.

Following Krueger, Mitman, and Perri (2016a), we consider two quantitative ex-

periments. In both experiments, we take as an initial condition the distribution of

wealth produced after several realizations of normal times for the aggregate produc-

tivity shock, so the wealth distribution is stabilized. Then, the economy slips into a

severe recession. The recession lasts only one quarter in the first experiment, returning

to normal times afterward. In the second experiment, the economy goes into reces-

sion for one quarter, and after that, it evolves stochastically, according to its aggregate

shock transition matrix. Therefore, in the second experiment, the expected duration of

the recession is 22 quarters.16 We simulate 10,000 independent paths of aggregate pro-

ductivity shocks. Then, for each period, we average across simulations the responses

of the macroeconomic variables.

16Note that this experiment is different from the one performed in Krueger, Mitman, and Perri
(2016a). They study the response of macro aggregates when the economy goes into a recession that lasts
22 quarters and then the economy returns to normal times.
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Figure 2 plots the impulse responses of aggregate consumption, investment, and

output to a one-time recession-type shock. The upper left panel displays the dynamics

of the technology shock, which is the same for both versions. The aggregate consump-

tion drops by 3.5% in the Cyclical model, while its decline is 3% in the Acyclical model.

Incorporating countercyclical earnings risk, conditional on employment, amplifies the

consumption response by 0.5 percentage points. This magnitude is considerable. For

example, Krueger, Mitman, and Perri (2016a) also find an additional drop in consump-

tion of 0.5 percentage points in response to the same type of shocks when moving

from the original low wealth inequality Krusell-Smith economy to their benchmark

economy with realistic wealth distribution.

Figure 2: Impulse response to aggregate technology shock: One-time technology shock

-1 0 1 2 3
Time (quarters)

-4

-3

-2

-1

0

 %
 Z

Aggregate Productivity IRF

-1 0 1 2 3
Time (quarters)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

 %
 C

Consumption IRF

Acyclical Model
Cyclical Model

-1 0 1 2 3
Time (quarters)

-6

-5

-4

-3

-2

-1

0

 %
 Y

Output IRF

-1 0 1 2 3
Time (quarters)

-15

-10

-5

0

 %
 I

Investment IRF

Note: The figure displays consumption, investment, and output dynamics in response
to a one-time negative technology shock after a long sequence of normal times technol-
ogy realizations for both model versions. The upper left panel displays the dynamics
of the technology shock.

22



Figure 3 plots the average responses of the macroeconomic aggregates to a recession

with an expected duration of 22 periods. The upper left panel shows the dynamics of

the technology shock, which is the same for both versions of the model. The output dy-

namics for the two models are nearly identical; however, aggregate consumption and

investment display different paths. Not only the magnitude of the drop in aggregate

consumption differs, but also its dynamics. In the Acyclical model, there is a smaller

drop in aggregate consumption at the onset of the recession, but it continues to fall for

several quarters. In the Cyclical model, the drop in aggregate consumption is more

prominent, and its growth after the onset of the recession has persistently languished.

As of the tenth quarter, the dynamic of aggregate consumption is essentially the same

for both types of models. The largest fall in aggregate investment for both economies

occurs when the recession hits.17

17As in McKay (2017), we have assumed that the mean of the labor earnings shock distribution
is constant over the business cycle. Therefore, the distribution median is larger in recessions than in
expansions to generate procyclical skewness. The above implies that fewer households draw negative
income shocks in recessions than in expansions, which is economically counterintuitive. To address this
concern in appendix A.7, we allow the mean of the idiosyncratic labor earnings shocks to vary over the
business cycle, so more people draw negative income shocks in recessions than in expansions.
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Figure 3: Impulse response to aggregate technology shock: Severe recession technol-
ogy shock.
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Note: The figure displays the average responses of aggregate consumption, invest-
ment, and output to a recession that lasts on average 22 quarters for the two versions
of the model. The upper left panel displays the dynamics of the technology shock.

What explains the different responses in aggregate consumption between the two

economies? In the Acyclical model, the only idiosyncratic risk that increases when the

economy slips into a recession is the probability of unemployment, and its expected

duration increases from 1.2 quarters in normal times to 1.5 quarters. The increased

unemployment risk translates into a current and short-lived expected future income

loss, which is easier to hedge. In contrast, in the Cyclical model, in addition to unem-

ployment risk, a long-lasting decline in earnings prospects increases during recessions.

Because of the high persistence of the increased risk, households sharply cut consump-

tion to form or increase their precautionary savings. In other words, an increase in a

highly persistent income risk drives the difference in consumption dynamics because

it is harder to ensure for both poor-wealth and the wealthiest households.
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To illustrate the mechanism, Table 4 shows the number of quarters that, on average,

are needed to reach the 10th and 30th percentile of the invariant distribution of labor

earnings, starting from the four lowest realizations of the labor efficiency shock. In

recessions, a household in the lowest realization must wait on average 7.6 quarters to

reach the 10th percentile of the invariant labor earnings distribution, while when the

economy is in normal times, it must wait on average 6.1 quarters. In other words, the

household must wait an average of 1.5 more quarters to reach the 10th percentile when

the economy enters a recession. The difference is even more significant if a household

wants to reach higher levels of labor earnings. For example, to reach the 30th percentile

of the invariant labor earnings distribution, it must wait for an additional 1.9 quarters

if the economy slips into a recession. Thus, the worst expected earnings prospects

in recessions lead households to vigorously increase their precautionary savings, pro-

ducing a more substantial decline in consumption in the economy with countercyclical

earnings risk.

Table 4: Average number of quarters needed to reach:
First Income Decile

Initial γ Recession Normal times ∆

γ1 7.6 6.1 1.5
γ2 6.7 5.3 1.4
γ3 6.0 4.6 1.4
γ4 5.3 3.9 1.4

Third Income Decile
Initial γ Recession Normal times ∆

γ1 11.0 9.1 1.9
γ2 10.2 8.3 1.9
γ3 9.5 7.6 1.9
γ4 8.7 6.9 1.8

Note: The table shows the number of quarters
that, on average, are needed to reach the 10th and
30th percentile of the invariant distribution of labor
earnings, starting from the four lowest realizations
of the labor productivity shock. We compute the
expected quarters in recession and in normal times.
The last column shows the difference in the number
of quarters between the two aggregate states.
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4.3 Welfare losses

One of the implications of the heterogeneity in consumption response across house-

holds is that welfare losses from large recessions will be unevenly distributed across

the population. Considering that the bottom two wealth quintiles have almost no

wealth but represent 23.7% of aggregate consumption, we should expect that welfare

losses will be more pronounced in this group and, once aggregated across households,

should be of a magnitude far greater than those found by Lucas (1987). As we know

from the previous section, the inclusion of countercyclical earnings risk produces a

more considerable drop in aggregate consumption in severe recessions, suggesting

that welfare losses may be substantial. This section quantifies the welfare losses for

our two model types.

Following Krueger, Mitman, and Perri (2016b), we measure household-specific wel-

fare losses as the permanent percent increase in consumption that makes it indifferent

between remaining in normal times zh and experiencing a recession zl with scaled-up

consumption. This measure is known as the consumption compensating variation. Let

λzh,zl(a, ε, γ, β; K), be the required percentage consumption compensation for a house-

hold with individual characteristics (a, ε, γ, β) to be willing to tolerate a severe reces-

sion today. Given a certain level of aggregate capital, the household-specific welfare

losses when the economy transitions from normal times to severe recession are given

by18

λzh,zl(a, ε, γ, β; K) = 100 ×
[(

v(a, ε, γ, β; K, zl)

v(a, ε, γ, β; K, zh)

) 1
σ−1

− 1

]
(2)

We measure aggregate welfare losses as the permanent increase in consumption

that makes a household, under the veil of ignorance, indifferent between remaining

in normal times zh and experiencing a recession zl with scaled-up consumption.19 Let

18See Appendix A.6.1 for the derivation of this result.
19Under the veil of ignorance, the household does not know how many assets it has nor what are

its labor characteristics. It only knows how individual states are distributed after a long sequence of
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λ be the required percentage consumption compensation for an average household to

be willing to tolerate a severe recession today. Given a certain level of capital K, the

aggregate welfare losses when the economy transitions from normal times to a severe

recession are given by20

λ = 100 ×




∫
v(a, ε, γ, β; K, z′) dΦ∫
v(a, ε, γ, β; K, z) dΦ


1

σ − 1
− 1

 (3)

Table 5 shows aggregate welfare losses and the fraction of households who expe-

rience welfare losses above certain thresholds (3% to 10%) for both model economies.

The aggregate welfare losses are around one percentage point greater in the cyclical

model (4.1% vs. 3.1%). There is considerable heterogeneity in the welfare losses within

both model versions. This heterogeneity is because these two models generate a wealth

distribution that matches the empirically observed US wealth distribution. The wealth-

rich households use their savings to hedge against the increased idiosyncratic risk that

the recession brings, while households with little or no wealth increase their precau-

tionary savings, cutting current and future consumption. Recall that in the previous

section, we established that the inclusion of pro-cyclical earnings risk, conditional on

employment, exacerbates the consumption drop. Therefore, the substantial reduction

in consumption generates bigger welfare losses and increases welfare heterogeneity as

those poor-wealth households will be the ones that cut consumption the most.

As shown in Figure 4, the Cyclical model has a distribution of welfare losses with

a right tail that is fatter and longer, which implies that a significant fraction of house-

holds suffers sizeable welfare losses. For example, around 23% of households experi-

ence losses bigger than 5% of lifetime consumption in the Cyclical model, while it is

about 11% in the acyclical model. Moreover, in the Cyclical economy, around 4% of

normal times aggregate shocks.
20See Appendix A.6.2 for the derivation of this result.

27



Table 5: Household-specific and aggregate welfare losses from Great Recession

Model Aggregate welfare loss % of households with loss
(% of lifetime consumption) > 3% > 4% > 5% > 6% > 7% > 8% > 9% > 10%

1. Acyclical 3.11 58.45 29.24 11.15 3.40 1.09 0.72 0.51 0.34
2. Cyclical 4.10 60.21 37.28 23.28 15.72 10.97 7.69 5.62 3.85

Note: The table shows aggregate welfare losses and the fraction of households who experience welfare losses above certain
thresholds (3-10%) for both economies. Household-specific welfare losses are computed from equation (2), while aggregate
welfare losses are computed from equation (3).

households suffer welfare losses greater than 10% of lifetime consumption, while only

0.35% suffer losses of this magnitude in the Acyclical economy.

Figure 4: Distribution of Welfare Losses
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Note: The figure shows household-specific welfare loss distribution for both versions of the model.
Household-specific welfare losses are computed from equation (2).

Households repeatedly unemployed and in low labor productivity states for mul-

tiple periods will not have enough opportunities to accumulate assets to protect them-

selves from the increased risk of a long-lasting earnings decline. Impatient households
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with little wealth will be seriously affected by the increased idiosyncratic risk since the

short-term business cycle is the primary determinant of their lifetime utility Krueger,

Mitman, and Perri (2016b). These types of households will be far away in the distribu-

tion’s right tail.

Figure 5 plots the welfare losses from experiencing a Great Recession today against

assets for currently employed households with the highest discount factor and numer-

ous idiosyncratic efficiency levels for both economies.21

Figure 5: Welfare Losses from Great Recession by Asset Holdings: High β
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Note: The figure plots the welfare losses from experiencing a Great Recession today against assets for
currently employed households with the highest discount factor and numerous idiosyncratic efficiency
levels for both economies. The top panel shows the results for low levels of efficiency, while the bottom
panel shows the results for high levels of efficiency.

21Note that the figure plots welfare losses just for the change from zh to zl , without any idiosyncratic
state change, such as the transition from employment to unemployment or high skill to low skill.
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The figure shows several interesting facts: (1) regardless of the model considered,

the aggregate transition from normal times to severe recession, with the associated in-

crease in idiosyncratic risks, is significantly costly in terms of welfare for all house-

holds, including the very rich. (2) The welfare loss is substantially large for those

households with zero or little net worth and low idiosyncratic efficiency because los-

ing one’s job or experiencing a reduction in efficiency when holding little or no wealth

implies a bigger consumption cut due to precautionary saving motives. (3) The in-

clusion of countercyclical earnings risk dramatically increases the welfare losses for

low-skilled households with little or no wealth. The difference in welfare losses be-

tween both models reduces as the household gets richer because, with more resources,

households can hedge against the increased idiosyncratic risks. (4) Even for a mod-

erate and high amount of wealth holdings, there is a noticeable difference in welfare

losses between the models. Also, as efficiency increases, welfare losses rise too because

those high productivity agents will cut consumption due to the fear of a long-lasting

income decline during recessions.

5 Conclusion

This paper adds to a growing literature emphasizing the importance of counter-

cyclical earnings risk during recessions for consumption dynamics and welfare losses.

We have argued that the inclusion of countercyclical labor income risk, conditional on

employment, into a canonical real business cycle model with heterogeneous house-

holds and incomplete markets amplifies the response of aggregate consumption on

impact by one percentage point to severe recessions such as the Great Recession of

2007-2009. Also, it significantly weakens the subsequent consumption growth. The

worst labor earnings prospects in recessions lead households to sharply cut consump-

tion and increase their precautionary savings to insure themselves against the possibil-

ity of suffering a highly persistent fall in earnings during economic downturns.
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We have also studied the welfare implications of countercyclical earnings risk. The

significant decline in aggregate consumption has its welfare counterpart. By reduc-

ing current and future consumption for precautionary motives, households experience

sizeable welfare losses. Once aggregated, the welfare losses are about 4.1% of lifetime

consumption. Furthermore, welfare losses vary enormously across household-specific

characteristics. Those households with no or little wealth, representing approximately

40% of the population, experience higher losses as they cannot properly insure them-

selves against the increase in idiosyncratic earnings risk during recessions.

In this work, the more consumption drops, the faster the recovery from recessions

is. Moreover, this paper has no role for social insurance other than providing resources

when unemployed. In reality, policymakers aim to stabilize output because of the en-

dogenous feedback between consumption and economic activity. At least two straight-

forward extensions for future research could be taken to shed light on the importance

of public policies employed during severe recessions. First, as Krueger, Mitman, and

Perri (2016a) did, aggregate externality demands could model the negative loop be-

tween output and consumption. A drop in consumption would yield an additional

output reduction, lowering aggregate wages, further exacerbating the consumption

drop. Thus, social insurance programs aiming to reduce wealth inequality would sta-

bilize consumption, decreasing the business cycle fluctuations. Second, in our model,

households exogenously supply a unit of time to the labor market, though a proper

calculation of the contribution of social insurance programs has to take into account

the distortions generated by its financing via taxation. Incorporating endogenous la-

bor supply choices into the model would give a more appropriate measure of the pros

and cons of public policies.
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Dı́az-Giménez, J., Glover, A., and Rı́os-Rull, J.-V. (2011). Facts on the Distributions of

Earnings, Income, and Wealth in the United States: 2007 update. Quarterly Review.

Frederick, S., Loewenstein, G., and O’Donogue, T. (2002). Time Discounting and Time

Preference: A Critical Review. Journal of Economic Literature 40, 351-401.

Garriga, C., and Hedlund, A. (2020). Mortgage Debt, Consumption, and Illiquid

Housing Markets in the Great Recession. American Economic Review, 110(6), 1603-34.

Guvenen, F. (2007). Learning your earning: Are labor income shocks really very

persistent?. American Economic Review, 97(3), 687-712.

Guvenen, F.(2009). An Empirical Investigation of Labor Income Processes. Review of

Economic Dynamics 12(1), 55-79.

Guvenen, F. (2011). Macroecnomics with Heterogeneity: A Practical Guide. Economic

Quarterly 97(3), 255-326.

Guvenen, F., Mckay, A., and Ryan, C. (2023). A Tractable Income Process for Business

Cycle Analysis. Working Paper.

Guvenen, F., Ozkan, S., and Song, J. (2014). The Nature of Countercyclical Income

Risk. Journal of Political Economy 122(3), 621-660.

34



Guvenen, F., Karahan, F., Ozkan, S., and Song, J. (2021). What Do Data on Millions of

US Workers Reveal about Lifecycle Earnings Dynamics? Econometrica 89(5), 2303-39.

Heathcote, J., Storesletten, K. and Violante, G. (2009). Quantitative Macroeconomics

with Heterogeneous Households. Annual Review of Economics, 1, 319-354.

Hendrickz, L. (2007). How Important is Discount Rate Heterogeneity for Wealth

Inequality? Journal of Economic Dynamics and Control 31, 3042-3068.

Hugget, M. (1993). The Risk-Free Rate in Heterogeneous-Agent Incomplete-insurance

Economies. Journal of Economic Dynamics and Control 17, 953-969.

Hugget, M. (1997). The One-Sector Growth Model with Idiosyncratic Shocks: Steady

State and Dynamics. Journal of Monetary Economics, 39, 385-403.

Imrohoroglu, A. (2008). Welfare Costs of Business Cycles. The New Palgrave Dictionary

of Economics, 2nd edition.

Japelli, T., and Pistaferri L. (2014). Fiscal Policy and MPC Heterogeneity. American

Economic Journal: Macroeconomics 6(4), 107-136.

Kaplan, G., Moll, B., and Violante, G. L. (2018). Monetary Policy According to HANK.

American Economic Review, 108(3), 697-743.

Krebs, T. (2007). Job displacement risk and the cost of business cycles. American

Economic Review, 97(3), 664-686.

Krueger, D., Mitman, K., and Perri, F. (2016a). Macroeconomics and Household Hetero-

geneity. Handbook of Macroeconomics, Volume 2A, Chapter 11, pp. 843-921. Elsevier.

Krueger, D., Mitman, K., and Perri, F. (2016b). On the Distribution of the Welfare

Losses of Large Recessions. NBER Working Paper Series, Working Paper 22458.

Krusell P., Mukoyama, T, Sahin, A., and Smith, A. (2009). Revisiting the welfare effects

of eliminating business cycles. Review of Economic Dynamics 12(3), 393-404.

35



Krusell P., and Smith, A. (1998). Income and Wealth Heterogeneity in the Macroecon-

omy. Journal of Political Economy 106(5), 867-896.

Krusell P. and Smith, A. (2006). Quantitative Macroeconomics Models with Heteroge-

neous Agents. Advances in Economics and Econometrics: Theory and Applications, Ninth

World Congress, 2006.

Harmenberg., K. and Sievertsen, H. The Labor-Market Origins of Cyclical Income

Risk. Manuscript

Lawrance, E. (1991). Poverty and the Rate of Time Preference: Evidence from Panel

Data. Journal of Political Economy 99, 54-77.

Low, H., Meghir, C., and Pistaferri, L. (2010). Wage risk and employment risk over the

life cycle. American Economic Review, 100(4), 1432-67.

Lucas, R. Jr. (1987). Models of Business Cycles. Yrjo Jahnsson Lecture Series, Helsinki,

Finland. Blackwell.

Maliar, L., Maliar, S., and Valli, F. (2010). Solving the Incomplete Markets Model

with Aggregate Uncertainty using the Krusell-Smith Algorithm. Journal of Economic

Dynamics and Control 34(1), 42-49.

McKay, A. (2017). Time-varying Idiosyncratic Risk and Aggregate Consumption

Dynamics. Journal of Monetary Economics 88(1), 1-14.

McKay, A., and Reis, R. (2021). Optimal Automatic Stabilizers. Review of Economic

Studies, 1-32.

Meeuwis, M. (2021). Idiosyncratic Income Risk, Precautionary Savings, and Asset

Prices. Working Paper.

Meghir, C., and Pistaferri, L. (2011). Earnings, Consumption and Life Cycle Choices.

Handbook of Labor Economics, Volume 4B, Chapter 9, pp. 773-854. Elsevier.

36



Meghir, C., and Pistaferri, L. (2004). Income Variance Dynamics and Heterogeneity.

Econometrica 72(1), 1-32.

Nakajima, M., and Smirnyagin, V. (2019). Cyclical Labor Income Risk. Working Paper.

Petev, I., Pistaferri, L., and Saporta, I. (2012). Consumption and the Great Recession:

An Analysis of Trends, Perceptions, and Distributional Effects. Analyses of the Great

Recession.

Pistaferri, L. (2016). Why Has Consumption Remained Moderate after the Great

Recession? Working Paper.

Rawls, J. (1999). A Theory of Justice. Belknap Press: An Imprint of Harvard University

Press, 2nd edition.

Rı́os-Rull, J. (1999). Computation of Equilibria in Heterogenous Agent Economies.

Computational Methods for the Study of Dynamic Economies, Chapter 11, pp. 238-264.

Oxford University Press.

Salgado, S., Guvenen, F., and Bloom, N. (2019). Skewed Business Cycles. NBER

Working Paper Series, Working Paper 26565.

Scheinkman, J., and Weiss, L. (1986). Borrowing Constraints and Aggregate Economic

Activity. Econometrica 54(1), 23-45.

Storesletten, K., Telmer, C., and Yaron, A. (2001). The Welfare Cost of Business

Cycles Revisited: Finite Lives and Cyclical Variation in Idiosyncratic Risk. European

Economic Review 45(1), 1311-1339.

Storesletten, K., Telmer, C., and Yaron, A. (2004a). Consumption and Risk Sharing.

Journal of Monetary Economics 51(1), 609-633.

Storesletten, K., Telmer, C., and Yaron, A. (2004b). Cyclical Dynamics in Idiosyncratic

Labor Market Risk. Journal of Political Economy 112(3), 695-717.

37



Zeldes, S. (1989a). Optimal Consumption with Stochastic Income: Deviations from

Certainty Equivalence. Quarterly Journal of Economics 104(1), 275-298.

Zeldes, S. (1989b). Consumption and Liquidity Constraints: An Empirical Investiga-

tion. Journal of Political Economy 97(1), 305-246

38



A Appendix

A.1 Estimation of Earnings Process

Guvenen, Ozkan, and Song (2014) uses data on earnings histories from 1978 to 2011

from the US Social Security Administration records to estimate the process of log-labor

productivity. The estimated process features parameters that change over the business

cycle. Given that our quantitative model is at a quarterly frequency, we convert the

annual process estimated in Guvenen, Ozkan, and Song (2014) to a quarterly process

that, once aggregated to a yearly basis, minimizes the distance from selected moments.

Those moments try to capture how the distribution of income changes varies over the

business cycles, in specific, how the tails of the distribution change while the median

varies little. We target the difference between the 10th and 90th percentile, the differ-

ence between the 50th and 10th percentile, the difference between the 90th and 50th

percentile, and the Kelley skewness of 1, 3, and 5-year income changes, distinguishing

between periods of expansion and contraction and the persistence of the process. The

quarterly process is the following:

log(yt) = ϕ log(yt−1) + ηt,

where ηt follows a mixture of normal distributions:

ηt =


N (µ1(zt), σ1) with prob. p1(zt)

N (µ2(zt), σ2) with prob. p2(zt)

N (µ3(zt), σ3) with prob. p3(zt),

Note that the means and probabilities of the mixture change along with the economy’s

state. As in McKay (2017) and McKay and Reis (2021), we normalize E(exp(ηt)) = 1

and E(exp(ϵt)) = 1, so changes in the skewness of the distribution will have no effects

on the first moment.
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The procedure to determine the values of the parameters of the quarterly process is

the following:

1. We simulate a long series of aggregate shocks using the matrix outlined in section

3.2. Then, we simulate a large panel of earnings histories using the annual pro-

cess. For expansions and contractions, compute the 10th, 50th, and 90th percentile

of 1, 3, and 5-year changes and the Kelley skewness.

2. We use a global optimization procedure to find the quarterly process’s parameter

values that, once aggregated at annual frequency, minimize the percentage differ-

ence between the moments generated by the annual process with those obtained

by aggregation of the quarterly process. To search the parameter values, we use

the Particle Swarm Optimization algorithm.22

The procedure gives us the following parameters for the quarterly process.

Table A.1: Estimated parameters for the process at quarterly frequency
ρ p1,R p2,R p3,R p1,E p2,E p3,E σ1 σ2 σ3 µ1,R µ2,R µ3,R µ1,E µ2,E µ3,E

0.986 0.863 0.072 0.065 0.782 0.133 0.043 0.161 0.189 0.328 0.021 -0.457 0.086 -0.0361 -0.075 0.327

22https://la.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html
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A.1.1 Goodness of fit

We denote ∆i as the i-th difference, LXY as the difference between the Xth and Yth

percentile, and K the Kelley skewness.

Table A.2: Annual and quarterly aggregated moments percentage difference: ∆1 log(y)

Recession Expansion
L9010 L5010 L9050 K L9010 L5010 L9050 K
0.069 0.073 0.0645 0.055 0.072 0.069 0.074 0.040

Table A.3: Annual and quarterly aggregated moments percentage difference: ∆3 log(y)

Recession Expansion
L9010 L5010 L9050 K L9010 L5010 L9050 K
-0.029 -0.032 -0.026 -0.025 -0.018 -0.015 -0.021 -0.038

Table A.4: Annual and quarterly aggregated moments percentage difference: ∆5 log(y)

Recession Expansion
L9010 L5010 L9050 K L9010 L5010 L9050 K
-0.048 -0.050 -0.047 -0.019 -0.038 -0.037 -0.039 -0.011
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Figure A.1: Density of ∆1 log(y): quarterly aggregated estimation
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Figure A.2: Density of ∆3 log(y): quarterly aggregated estimation
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Figure A.3: Density of ∆5 log(y): quarterly aggregated estimation
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A.2 Simulation of a Continuum of Agents

In this section, we describe the procedure of Rı́os-Rull (1999) and then adapted it by

Algan, Allais, Den Haan, and Rendahl (2014) to simulate a continuum of agents. In this

procedure, the CDF is approximated with a linear spline, meaning that a uniform dis-

tribution between grid points is assumed. At each node κ, we calculate the capital stock

at the beginning of the period x, which would lead to the value of κ. That is, x is the

inverse of κ according to the asset policy function. The algorithm proceeds as follows:

1. Grid: construct a grid and define the capital distribution at the beginning of pe-

riod t = 0 as follows:

(a) κ0 = 0 and κi, for i = 1, . . . , I.

(b) Let pω,0,t be the share of agents in state ω ∈ Ω = {0, 1} × {γ1, . . . , γn} ×

{β1, . . . , βm} that have capital stock equal to zero at the beginning of the pe-

riod t.

(c) For i > 0, let pω,i,t be the mass of agents with a capital stock greater than

κi−1 and less than κi. It is assumed that this mass of individuals is uniformly

distributed over points on the grid.

(d) Note that:

I

∑
i=0

pω,i,t = 1.

Denote this initial distribution by Pω,t(k).

2. Distribution at the end of the period: calculate the level of assets such that the

agent chooses a capital equal to κi for the next period. Denote this level by xω,i,t.

By definition:

a′(xω,i,t, ε, γ, β; Kt, zt) = κi

For any point on the grid, the cumulative density function for the end of period t
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for agents with state ω is given by:

Fω,i,t =
∫ xω,i,t

0
dPω,t(k) =

iω,t

∑
i=0

pω,i,t +
xω,i,t − κω,iω,t

κiω,t+1 − κiω,t

pω,iω,t+1,t

where iω,t = i(xω,i,t) is the largest value of i such that κi ≤ xω,i,t. The second equal-

ity follows from the assumption that Pω,t is uniformly distributed over points on

the grid.

3. Initial distribution in the next period: let gωt,ωt+1,zt,zt+1 be the mass of agents with

state ωt today and with state ωt+1 next period, conditional on the values of zt, zt+1.

So, for each combination of zt and zt+1, it follows that:

∑
ωt∈Ω, ωt+1∈Ω

gωt,ωt+1,zt,zt+1 = 1

From this, we get

Pω,i,t+1 = ∑
ωt∈Ω

(
gωt,ωt+1

∑ωt∈Ω gωt,ωt+1

)
Fω,i,t

and

pω,0,t+1 = Pω,0,t+1

pω,i,t+1 = Pω,i,t+1 − Pω,i−1,t+1
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A.3 Iterating on the Euler Equation

We iterate on the Euler equation proposed in Maliar, Maliar, and Valli (2010) to obtain

the policy functions. This method has the advantage of being faster to compute and is

more accurate than value function iteration. One drawback, however, is that its con-

vergence is less stable, so it should be used with a damping parameter, as we will show.

The Euler equation, the budget constraint, the borrowing constraint, and the Kuhn-

Tucker are, respectively:

c−σ + h = βE
[
c′−σ(1 − δ + r′)

]
Euler equation

c + a′ =
[

1 − δ + r
θ

]
a + (1 − τ)w exp(γ)ε + b(1 − ε) Budget constraint

a′ ≥ 0 Borrowing constraint

h ≥ 0, ha′ = 0 Kuhn-Tucker conditions.

Form the budget constraint:

c(a′, ε, γ, β) =

[
1 − δ + r

θ

]
a + (1 − τ)w exp(γ)ε + b(1 − ε)− a′

Guessing a′ and computing a′′ = a′(a′), we get an expression to iterate on:

c(ã′, ε, γ, β)−σ = h + βE
[
c(a′′, ε′, γ′, β)−σ(1 − δ + r′)

]
(4)

⇔ ã′ =
[

1 − δ + r
θ

]
a + (1 − τ)w exp(γ)ε + b(1 − ε)

−

h + βE

 1 − δ + r′([
1 − δ + r′

θ

]
a′ + (1 − τ′)w′ exp(γ′)ε′ + b(1 − ε′)− a′′

)σ




− 1
σ

(5)

where h ≡ h(a, ε, γ, β; K, z), a′ ≡ a′(a, ε, γ, β; K, z) and a′(a′) ≡ a′(a′(a, ε, γ, β; K, z)).
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Formally, the solution algorithm is as follows:

1. Choose the relevant space for asset holdings a ∈ [0, amax] and for aggregate capital

K ∈ [Kmin, Kmax], then discretize these intervals to generate the grids. Given that

the asset policy function has more curvature near the borrowing constraint but

is almost linear in high levels of wealth, we placed more grid points at low asset

holdings using the following formula outlined in Maliar, Maliar, and Valli (2010):

aj =

(
j
J

)ϑ

amax, for j = 0, 1, . . . , J

where J + 1 is the number of grid points, and ϑ controls the concentration of points

in the beginning. As ϑ increases, more grid points are placed at the beginning, and

fewer are placed towards the end of the grid. In practice, we use ϑ = 8. We use

an evenly spaced grid for aggregate capital because the asset policy function is

almost linear in that dimension.

2. Guess an initial policy function for capital a′(a, ε, γ, β; K, z) for the values on the

grid.

3. For each point in the grid (a, ε, γ, β; K, z), plug the policy function a′(a, ε, γ, β; K, z)

on the right side of equation (5), set the Lagrangian multiplier to equal zero and

compute the new policy function for capital, ã′(a, ε, γ, β; K, z). For any point in

the grid such that ã′(a, ε, γ, β; K, z) is not in the range [0, amax], set ã′(a, ε, γ, β; K, z)

equal to the value of the corresponding limit.

4. Update the policy function using the following formula:

˜̃a′(a, ε, γ, β; K, z) = (1 − ω)ã′(a, ε, γ, β; K, z) + ωa′(a, ε, γ, β; K, z)

where ω ∈ (0, 1] is a damping parameter. We use a small value for ω so the new

guess for the policy is less prone to oscillations, which could hinder the conver-

gence.
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5. Iterate steps 2-4 until convergence:

∣∣∣∣∣∣ ˜̃a′(a, ε, γ, β; K, z)− a′(a, ε, γ, β; K, z)
∣∣∣∣∣∣

max
< 10−7

A.4 Discretizing an Asymmetric Process with High Kurtosis

The idiosyncratic labor earnings process has asymmetric distribution and high kur-

tosis, consequently, its discretization is not trivial. We discretize this process using a

first-order Markov chain through a modification of the method proposed in Civale,

Dı́ez-Catalán, and Fazilet (2016). Specifically, consider T realizations of the aggre-

gate shock Z = {z1, . . . , zT} and T × M realizations of the idiosyncratic shock Ym =

{y1,m, . . . , yT,m}, m = 1, . . . , M.

The set of nodes of the calibrated Markov chain is denoted by Γ = {γ1, . . . , γN}.

This set of nodes is the same for both recessions and expansions. The nodes are chosen

to match specific moments of Y. Denote by M(Y, Z) the vector of moments of the orig-

inal process and by M̂(Γ, Z) the same vector of moments but generated by the discrete

process.

The procedure is

(i) Choose the number of nodes N.

(ii) Choose node values, Γ = {γ1, . . . , γN}.

(iii) For chosen nodes, map the realizations Y into a sequence of discrete realizations

{x1, . . . , xT} as follows:

xt = argmin
γ ∈ Γ

|yt − γ|, t = 1, . . . , T.

(iii) Given X = {x1, . . . , xT} get M̂(Γ, Z) and compute:

F =

[
M(Y, Z)− M̂(Γ, Z)

M(Y, Z)

]′
W

[
M(Y, Z)− M̂(Γ, Z)

M(Y, Z)

]
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where W is a weight matrix. We use identity.

(iv) Find Γ = {γ1, . . . , γN} to minimize F iterating steps (ii) and (iii). To find the nodes

we use Simulated Annealing.

Denote by π(γ, γ′) =
{

π(γ′|γ, z′l, zl), π(γ′|γ, z′h, zl), π(γ′|γ, z′l, zh), π(γ′|γ, z′h, zh)
}

the transition matrices for labor earnings process for the different combinations of tran-

sitions between aggregate states. Given the nodes Γ = {γ1, . . . , γN} we can obtain the

transition matrices.

(i) For transitions between aggregate states (zt+1 = zl, zt = zl) and (zt+1 = zh, zt =

zh) compute the transition probability between idiosyncratic state i to j as:

π(γj|γi, zt+1, zt) =

N−1
∑

t=1
1
(
xt = γi, xt+1 = γj, zt+1 = z′, zt = z

)
N−1
∑

t=1
1 (xt = γi, zt+1 = z′, zt = z)

where 1(·) is the indicator function.

(ii) To compute the probabilities of the transition matrices associated with expansion

to a recession, and vice versa, we follow closely Krusell and Smith (1998), ex-

tended to 19 possible realizations of the idiosyncratic earnings shock.

Finally, to ensure consistency, the probabilities are adjusted so that the following

equations hold ∀(z, z′) ∈ Z ×Z :


Πz′ (γ1)

Πz′ (γ2)

...

Πz′ (γN−1)

Πz′ (γN)

 =


π(γ1|γ1, z′, z) π(γ1|γ2, z′, z) . . . π(γ1|γN−1, z′, z) π(γ1|γN , z′, z)

π(γ2|γ1, z′, z) π(γ2|γ2, z′, z) . . . π(γ2|γN−1, z′, z) π(γ2|γN , z′, z)
...

...
. . .

...
...

π(γN−1|γ1, z′, z) π(γN−1|γ2, z′, z) . . . π(γN−1|γN−1, z′, z) π(γN−1|γN , z′, z)

π(γN |γ1, z′, z) π(γN |γ2, z′, z) . . . π(γN |γN−1, z′, z) π(γN |γN , z′, z)




Πz(γ1)

Πz(γ2)

...

Πz(γN−1)

Πz(γN)


N

∑
j=1

π(γj|γi, z′, z) = 1, ∀ i = 1, . . . , N
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A.5 Recovering the Value Function

The model is solved via iteration of the Euler equation, however, to analyze welfare

the value function is needed. This section explains how to retrieve the value function

from the policy function.

1. Obtain a′(a, ε, γ, β; K, z), c(a, ε, γ, β; K, z) by iterating the Euler equation.

2. Guess v0(a, ε, γ, β; K, z) and compute vi(a, ε, γ, β; K, z), i = 0, 1, 2, . . . using the fol-

lowing equation:

vi+1(a, ε, γ, β; K, z) = u
(

c(a, ε, γ, β; K, z)
)
+ βθE

[
vi (a′(a, ε, γ, β; K, z), ε′, γ′, β; K′, z′

)]
We use interpolation with splines to evaluate the value function in points outside

the grids’ individual assets and aggregate capital.

3. Repeat step 2 until ||vj − vj−1||max < Tol.

A.6 Individual and Aggregate Welfare Losses

A.6.1 Individual welfare losses quantification

Consider the lifetime utility of a household with individual characteristics (a, ε, γ, β)

that follows the optimal policy under the aggregate state (K, zh):

v(a, ε, γ, β; K, zh) = E0

[
∞

∑
t=0

(βθ)t c1−σ
t

1 − σ

]

Next, consider the previous household, but the aggregate state of the economy has

changed to zl and the household is compensated by scaling up its consumption by a

factor λ in every t and at every node of the event tree. Its lifetime utility is given by
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v(a, ε, γ, β; K, zl, λ) = E0

 ∞

∑
t=0

(βθ)t

(
(1 + λ)ct

)1−σ

1 − σ


= (1 + λ)1−σE0

[
∞

∑
t=0

(βθ)t c1−σ
t

1 − σ

]
= (1 + λ)1−σv(a, ε, γ, β; K, zl)

For the household to be indifferent between normal times or the economy entering a

severe recession but receiving compensation, we must find the value of λ such that

v (a, ε, γ, β; K, zl, λ) = v(a, ε, γ, β; K, zh)

⇔ (1 + λ)1−σv(a, ε, γ, β; K, zl) = v(a, ε, γ, β; K, zh)

Therefore, the scaling factor λ, as a percentage is

λzh,zl(a, ε, γ, β) = 100 ×
[(

v(a, ε, γ, β; K, zl)

v(a, ε, γ, β; K, zh)

) 1
σ−1

− 1

]
> 0,

as long as v(a, ε, γ, β; K, zl)/v(a, ε, γ, β; K, zh) < 1, which is true under a severe reces-

sion. In other words, if λzh,zl(a, ε, γ, β) > 0 and σ > 1, the household gets a positive

compensation.

A.6.2 Aggregate welfare losses quantification

The average welfare in the economy with aggregate capital K and state of aggregate

shock zh is given by

∫
v(a, ε, γ, β; K, zh) dΦ =

∫
E0

[
∞

∑
t=0

(βθ)t c1−σ
t

1 − σ

]
dΦ
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Next, consider the previous economy, but the aggregate state of the economy has

changed to zl where all individuals are compensated by scaling up its consumption

by a factor λ in every t and at every note of the event tree. Its lifetime utility is given by

∫
v
(
a, ε, γ, β; K, zl, λ

)
dΦ =

∫
E0

 ∞

∑
t=0

(βθ)t

( (
1 + λ

)
ct

)1−σ

1 − σ

 dΦ

Under the Veil of Ignorance, by how much would each agent in the economy have to

be compensated, in terms of equivalent consumption units, to be indifferent between

normal times or severe recession getting a compensation λ? We must find the value of

λ such that

∫
v
(
a, ε, γ, β; K, zl, λ

)
dΦ =

∫
v(a, ε, γ, β; K, zh) dΦ

⇔ (1 + λ)1−σ
∫

v(a, ε, γ, β; K, zl) dΦ =
∫

v(a, ε, γ, β; K, zh) dΦ

Therefore, λ, as a percentage is

λ = 100 ×




∫
v(a, ε, γ, β; K, zl) dΦ∫
v(a, ε, γ, β; K, zh) dΦ


1

σ−1

− 1



A.7 Alternative idiosyncratic earnings risk process

In the literature, innovations of the persistent component are drawn from a mixture of

normal distributions whose parameters vary with the business cycle. However, there

are two important features to notice. First, we do not impose restrictions on the mean

of the innovations of the persistent component, as the literature does. Therefore, our

process’s mean and median are larger in expansions than in recessions. This approach

may seem flawed at first sight, but Guvenen, Ozkan, and Song (2014) argues that the

cyclical nature of labor earnings shocks arises from the behavior of the tails of its distri-
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bution, which oscillate back and forth along the business cycle, displaying, therefore,

procyclical skewness. Since the median exhibits small movements, the tail swings are

the main driver of the changes in the mean of labor earnings shocks. Thus, reces-

sions are best described as a modest negative shock to the median and a large negative

shock to the skewness of the distribution of idiosyncratic labor earnings shocks, with

little changes in its variance (Guvenen, Ozkan, and Song, 2014).

Second, due to the procyclical skewness of the idiosyncratic earnings shock distri-

bution, if we impose some restriction on its mean, we will be assuming that households

face more positive small shocks in recessions than in expansions, which is economically

counterintuitive. To illustrate the second point, consider the idiosyncratic efficiency

process of Meeuwis, M. (2021), which follows a similar specification as McKay (2017),

log(xt) = log(xt−1) + ηt,

where ηt ∼


N (µ1,t, σ1) with probability p1

N (µ2,t, σ2) with probability p2

N (µ3,t, σ3) with probability 1 − p1 − p2

and µ1,t = µt,

µ2,t = µt + µ2 − xt,

µ3,t = µt + µ3 − xt

where µ2 < 0 < µ3 and xt is a risk factor that shifts the tails of the distribution of earn-

ings growth. The term µt is such that E[exp(ηt)] = 1, ∀t. This seemingly innocuous

normalization implies that in recessions, where the term xt grows, the distribution of

ηt has a larger median than in expansions, where the term xt decreases. Consequently,

more people draw positive shocks in recessions than in expansions.
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Meeuwis, M. (2021) presents the logarithm of the distribution density of ηt to argue

that the shifts of the tails in recessions and expansions produce a small change in the

median. However, a closer look at the distribution density of ηt reveals the opposite,

as figure A.4 shows.

Figure A.4: Density of annual earnings change in Meeuwis, M. (2021).
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Note: The figure displays the distribution density of ηt.
Source: own simulation using Meeuwis, M. (2021) process and estimated parameters.
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A.7.1 A One-Time Negative Technology Shock

To aid the comparison in the one-time negative technology shock, we add the response

of a representative agent economy. Figure A.5 plots aggregate consumption, invest-

ment, and output impulse responses to a one-time recession shock. The upper left

panel displays the dynamics of the technology shock, which drops further in the rep-

resentative agent and acyclical model to match the same initial output drop in reces-

sions that generates the cyclical model. The figure reveals that the one-time shock in-

duces a consumption drop of 2.97% in the cyclical model, 2.43% in the acyclical model,

and 1.96% in the representative agent economy. Thus, the same output decline gener-

ates a consumption drop 0.54 percentage points larger (or 22% larger) in the cyclical

model than in the acyclical model. Also, the acyclical model causes a consumption

drop 0.47 percentage points larger (or 24% larger) than the representative agent model.

Thus, conditional on employment, cyclical labor earnings risk is as relevant as mod-

eling economies that produce realistic wealth inequality for accounting for the sharp

consumption drop observed in the data. Moreover, since the output is used for con-

sumption or investment, and labor supply and efficiency are exogenous, there is a more

minor fall in investment in the cyclical model relative to its acyclical counterpart. This

smaller fall in investment translates into a slightly higher level of capital, generating

virtually no difference in output dynamics between the acyclical and cyclical models

in the one-period recession experiment.
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Figure A.5: Impulse Response: one-time negative technology shock
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Note: The figure displays consumption, investment, and output dynamics in response to a one-time
technology shock after a long sequence of normal times technology realizations for both model versions.
The upper left panel displays the dynamics of the technology shock.

A.7.2 Response with and without TFP

What is the role of TFP changes in the IRFs we have analyzed? Recall that the model of

McKay (2017) falls short in accounting for the deep decline in consumption observed

during the Great Recession because, in his results, TFP remains constant. Notice that

considering TFP changes in the last experiment, our model can match the magnitude

of the consumption drop observed in the data of approximately 3.6%. To gain further

insights into TFP changes’ role, we repeat the two experiments in an economy similar

to the Cyclical Model but keeping TFP constant in recessions and expansions. Figure

A.6 shows the consumption response for the Cyclical Model with and without TFP

changes for both experiments.
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Figure A.6: Consumption Response: One-Time and Severe Recession Technology
Shock for the Cyclical Model with and without TFP changes.
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Note: The figure displays the dynamics of the consumption response when the economy slips into a
recession that last one period and a recession that lasts, on average, 22 periods.

We want to highlight three observations from figure A.6. First, lower factor prices

when the recession hits the economy is crucial for generating a sharp initial consump-

tion drop. The intuition behind the further initial consumption fall is that when TFP is

lower, the disposable income of households is decreased because the real interest rate

and real wage decrease, reducing the net return of asset holdings and labor income of

all households, including for those who do not draw an idiosyncratic negative shock

because of the recession. Second, in response to a Severe Recession Technology Shock,

the model with constant TFP displays negligible additional falls in consumption after

the initial drop. In contrast, in the model where TFP decreases, consumption falls an

additional 0.5 percentage points after the initial drop. Third, in response to a Severe

Recession Technology Shock, consumption recovers faster in the model with constant

TFP, where it begins to recover at period 10, relative to the model with TFP changes,
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where it starts to grow after 18 periods. The slow recovery when TFP falls is because

households will allocate fewer goods for investment and consumption due to the re-

duction in available sources. Therefore, for consumption to begin to recover, house-

holds need to ensure that they have reached an optimal level of savings (investment),

which takes more time when recessions are associated with lower TFP.

Given the observations in the previous paragraph, we conclude that cyclical id-

iosyncratic efficiency shocks are an important element to consider in generating an

initial sharp decline in consumption and a weaker recovery, even if TFP remains con-

stant. However, cyclical idiosyncratic efficiency shocks and reductions in TFP reinforce

the initial sharp drop in consumption and slow its recovery, making the consumption

response in the model closer to the response shown by the data. Consequently, future

research studying severe recessions cannot leave aside changes in TFP. In this regard,

McKay (2017) acknowledges that his results merely illustrate the importance of cycli-

cal long-term earnings risk rather than fully characterize the consumption dynamics

during the Great Recession, that is, its sharp initial drop and its languished recovery.
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